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1.

Abstract
The purpose of this paper is to establish some coupled coincidence point for a pair of commut-
ing mappings involving quadratic terms in partially ordered complete metric spaces. We also
present a result on the existence and uniqueness of coupled common fixed points. We provide
an example to validate our results.

1.Introduction

S. Banach [5] proved the famous and well known Banach contraction principle concerning
the fixed point of contraction mappings defined on a complete metric space. This theorem
has been generalized and extended by many authors see for ( [1],[2],[9],[13],[15],[8]) in var-
ious ways. Recently, Ran and Reurings [16], Bhaskar and Lakshmikantham [6], Nieto and
Lopez [13], Agarwal, El-Gebeily and O’Regan [15] and Lakshmikantham and Ciric [7] pre-
sented some new results for contractions in partially ordered metric spaces. There after, many
authors obtained many coupled coincidence and coupled fixed point theorems in ordered metric
spaces (see [1],[3],[11],[12],[13],[14] as examples). For a given partially ordered set, Bhaskar and
Lakshmikantham [6] introduced the concept of coupled fixed point of a mapping. Later Lak-
shmikantham and Ciric [10] investigated some more coupled fixed point theorems in partially
ordered sets. Very recently, Samet [17] extended the results of Bhaskar and Lakshmikantham
[6] to mappings satisfying a generalized Meir-Keeler contractive condition.

2.Preliminaries
Let us recall the following definitions of coupled fixed point and mixed monotone properties of
a mapping.

Definition 2.1.([6]). Let (X,�) be a partially ordered set and F : X × X → X. The
mapping F is said to have the mixed monotone property if F (x, y) is monotone nonde-
creasing in x and is monotone non increasing in y, that is, for any x, y ∈ X, x1, x2 ∈ X,
x1 � x2 ⇒ F (x1, y) � F (x2, y) and y1, y2 ∈ X, y1 � y2 ⇒ F (x, y1) � F (x, y2). This definition

1Corresponding author
2000 Mathematics Subject Classification : Primary : 47H10, 54H25

Key Words and Phrases : Coupled fixed point, Partially ordered set, Mixed monotone property.

1

International Journal of Scientific & Engineering Research, Volume 7, Issue 10, October-2016 
ISSN 2229-5518 

1869

IJSER © 2016 
http://www.ijser.org

IJSER



2 Some new couple common fixed point · · · complete metric spaces

coincides with the notion of a mixed monotone function on R2 and represents the usual total
order in R.

Definition 2.2.([6]). We call an element (x, y) ∈ X × X a coupled fixed point of the
mapping F : X ×X → X if F (x, y) = x and F (y, x) = y.
The concept of the mixed monotone property is generalized in [10].

Definition 2.3. ([10]). Let (X,�) be a partially ordered set and F : X × X → X and
g : X → X. The mapping F is said to have the mixed g-monotone property if F is monotone
g-nondecreasing in its first argument and is monotone g-nonincreasing in its second argument,
that is, for any x, y ∈ X

x1, x2 ∈ X, g(x1) � g(x2) ⇒ F (x1, y) � F (x2, y) (1)
and y1, y2 ∈ X, g(y1) � g(y2) ⇒ F (x, y1) � F (x, y2). (2)

Clearly, if g is the identity mapping, then Definition 2.3 reduces to Definition 2.1.

Definition 2.4. [6]. An element (x, y) ∈ X × X is called a coupled coincidence point of
the mappings F : X ×X −→ X and g : X ×X if F (x, y) = g(x), and F (y, x) = g(y).

Definition 2.5. Let (X,d) be a metric space and F : X × X → X and g : X → X be
mappings. We say F and g commute if F (g(x), g(y)) = g(F (x, y)) for all x, y ∈ X.

In this paper we proved, Some new couple common fixed point theorems for a pair of com-
muting mappings involving quadratic terms in partially ordered complete metric space.

3. Main result
The following theorems are is our main results.
Theorem 3.1. Let (X, d,�) be an ordered metric space. Let F : X×X → X and g : X → X
be mappings such that F has the mixed g-monotone property on X such that there exist
two elements x0, y0 ∈ X with g(x0) � F (x0, y0) and g(y0) � F (y0, x0). Suppose there exist
non-negative real numbers α, β, with α + β < 1 such that

d2(F (x, y), F (u, v)) ≤ α min{d(F (x, y), g(x))d(F (u, v), g(x)), d(F (u, v), g(x))d(F (x, y), g(u))}
+β min{d(F (x, y), g(u))d(F (u, v), g(u)), d(F (u, v), g(x))d(F (x, y), g(u))}

(3)

for every (x, y), (u, v) ∈ X×X with g(x) � g(u) and g(y) � g(v). Further suppose F (X×X) →
g(X) and g(X) is a complete subspace of X. Also, suppose that X satisfies the following prop-
erties:
(i) if a nondecreasing sequence {xn} in X converges to x ∈ X, then xn � x for all n,
(ii) if a nonincreasing sequence {yn} in X converges to y ∈ X, then yn � y for all n. Then
there exist x, y ∈ X such that F (x, y) = g(x) and F (y, x) = g(y), that is, F and g have a
coupled coincidence point (x, y) ∈ X ×X.

Proof. Suppose x0, y0 ∈ X be such that g(x0) � F (x0, y0) and g(y0) � F (y0, x0). Since
F (X×X) ⊆ g(X), we can choose x1, y1 ∈ X such that g(x1) = F (x0, y0) and g(y1) = F (y0, x0).
Similarly we construct, g(x2) = F (x1, y1) and g(y2) = F (y1, x1). Continuing in this way we
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Rakesh Tiwari and Savita Gupta 3

construct two sequences {xn} and {yn} in X such that,
g(xn+1) = F (xn, yn) and g(yn+1) = F (yn, xn) for all n ≥ 0. (4)
Now we prove that for all n ≥ 0,

g(xn) � g(xn+1) (5)

and

g(yn) � g(yn+1). (6)

We shall use the method of mathematical induction. Let n = 0. Since g(x0) � F (x0, y0) and
g(y0) � F (y0, x0), in view of g(x1) = F (x0, y0) and g(y1) = F (y0, x0), we have g(x0) � g(x1)
and g(y0) � g(y1), that is, (5) and (6) hold for n = 0. We presume that (5) and (6) hold for
some n > 0. As F has the mixed g-monotone property and g(xn) � g(xn+1), g(yn) � g(yn+1),
from (4), we get

g(xn+1) = F (xn, yn) � F (xn+1, yn) (7)
and

F (yn+1, xn) � F (yn, xn) = g(yn+1). (8)

Also for the same reason we have g(xn + 2) = F (xn+1, yn+1) � F (xn+1, yn) and F (yn+1, xn) �
F (yn+1, xn+1) = g(yn+2).
Then from (4) and (5), we obtain g(xn+1) � g(xn+2) and g(yn+1) � g(yn+2). Thus by the
mathematical induction, we conclude that (5) and (6) hold for all n = 0.
We check easily that

g(x0) � g(x1) � g(x2) � ... � g(xn+1) � ...
and

g(y0) � g(y1) � g(y2) � .... � g(yn+1) � ....
Since

g(xn) � g(xn−1) and g(yn) � g(yn−1),

Also for the same reason we have
g(xn+2) = F (xn+1, yn+1) � F (xn+1, yn) and F (yn+1, xn) � F (yn+1, xn+1) = g(yn+2).

Then from (4) and (5), we obtain g(xn+1) � g(xn+2) and g(yn+1) � g(yn+2). Thus by the
mathematical induction, we conclude that (5) and (6) hold for all n ≥ 0. We check easily that

g(x0) � g(x1) � g(x2) � � g(xn+1) � ....

and

g(y0) � g(y1) � g(y2) � � g(yn+1) � .......

Since g(xn) � g(xn−1) and g(yn) � g(yn−1), from (3) and (4), we have
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4 Some new couple common fixed point · · · complete metric spaces

d2(g(xn+1), g(xn)) = d2(F (xn, yn), F (xn−1, yn−1))
≤ α min{d(F (xn, yn), g(xn))d(F (xn−1, yn−1), g(xn)),

d(F (xn−1, yn−1), g(xn))d(F (xn, yn), g(xn−1))}
+β min{d(F (xn, yn), g(xn−1))d(F (xn−1, yn−1), g(xn−1)),
d(F (xn, yn), g(xn−1))d(F (xn−1, yn−1), g(xn))}

or

d2(g(xn+1), g(xn)) ≤ β d2(g(xn), g(xn−1)). (9)

Similarly, since g(yn−1) � g(yn) and g(xn−1) � g(xn), from (3) and (4), we have

d2(g(yn), g(yn+1)) ≤ α d2(g(yn), g(yn−1)). (10)

From (9) and (10), we have

d2(g(xn+1), g(xn)) + d2(g(yn), g(yn+1)) ≤ β d2(g(xn), g(xn−1)) + α d2(g(yn), g(yn−1))
≤ (α + β)d2(g(xn), g(xn−1)) + (α + β)d2(g(yn), g(yn−1))
= (α + β)[d2(g(xn), g(xn−1)) + d2(g(yn), g(yn−1))].

Setting ρn = d2(g(xn+1), g(xn)) + d2(g(yn+1), g(yn)) and δ = α + β, we get the sequence {ρn}
is decreasing as

0 ≤ ρn ≤ δρn−1 ≤ δρn−2 ≤ .... ≤ δnρ0

This implies

limn→∞ρn = limn→∞[d2(g(xn+1), g(xn))+d2(g(yn+1), g(yn))] = 0. (11)

Thus,

limn→∞d2(g(xn+1), g(xn)) = 0 and limn→∞d2(g(yn+1), g(yn)) = 0.
In what follows, we shall prove that {g(xn)} and {g(yn)} are Cauchy sequences.
For each m ≥ n, we have

d2(g(xm), g(xn)) ≤ d2(g(xm), g(xm−1)) + d2(g(xm−1), g(xm−2)) + .... + d2(g(xn+1), g(xn))

and

d2(g(ym), g(yn)) ≤ d2(g(ym), g(ym−1)) + d2(g(ym1), g(ym−2)) + ... + d2(g(yn+1), g(yn)).

Therefore

d2(g(xm), g(xn)) + d2(g(ym), g(yn)) ≤ ρm−1 + ρm−2 + ... + ρn

≤ (δm−1 + δm−2 + ... + δn)ρ0

≤ δn

1− δ
ρ0 (12)
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Rakesh Tiwari and Savita Gupta 5

which implies that

limn,m→∞[d2(g(xm), g(xn)) + d2(g(ym), g(yn))] = 0.

This implies that {g(xn)} and {g(yn)} are Cauchy sequences in g(X). Since g(X) is a complete
subspace of X, there exists (x, y) ∈ X ×X such that g(xn) → g(x) and g(yn) → g(y). Since
{g(xn)} is a nondecreasing sequence and g(xn) → g(x) and as {g(yn)} is a nonincreasing
sequence and g(yn) → g(y), by assumption we have g(xn) � g(x) and g(yn) � g(y) for all n.
Since

d2(g(xn+1), F (x, y)) = d2(F (xn, yn), F (x, y))
≤ α min{d(g(xn+1), g(xn))d(F (x, y), g(xn)), d(F (x, y), g(xn))d(g(xn+1), g(x))}

+ β min{d(g(xn+1), g(x))d(F (x, y), g(x)), d(F (x, y), g(xn))d(g(xn+1), g(x))}.

Taking the limit as n → ∞ we get d2(g(x), F (x, y)) = 0. Hence g(x) = F (x, y). Similarly, we
can show that g(y) = F (y, x). Thus we proved that F and g have a coupled coincidence point.
This completes the proof.

Theorem 3.2. Let (X,�) be a partially ordered set and suppose there is a metric d on X
such that (X, d) is a complete metric space. Let F : X ×X → X and g : X → X be mappings
such that F has the mixed g-monotone property on X such that there exist two elements
x0, y0 ∈ X with g(x0) � F (x0, y0) and g(y0) � F (y0, x0). Suppose there exist non-negative
real numbers α, β with α + β < 1 such that

d2(F (x, y), F (u, v)) = α min{d(F (x, y), g(x))d(F (u, v), g(x)), d(F (u, v), g(x))d(F (x, y), g(u))}
+ β min{d(F (x, y), g(u))d(F (u, v), g(u)), d(F (x, y),
g(u))d(F (u, v), g(x))} (13)

for all (x, y), (u, v) ∈ X ×X with g(x) � g(u) and g(y) � g(v). Further suppose F (X ×X) ⊆
g(X), g is continuous nondecreasing and commutes with F , and also suppose either

(i) F is continuous or
(ii) X has the following property:

(a) if a nondecreasing sequence {xn} in X converges to x ∈ X, then xn � x for all n,
(b) if a nonincreasing sequence {yn} in X converges to y ∈ X, then yn � y for all n,

Then there exist x, y ∈ X such that F (x, y) = x and F (y, x) = y, that is, F has a coupled
fixed point (x, y) ∈ X ×X.
Proof. Following the proof of Theorem 3.1, we have two Cauchy sequences {gxn} and {gyn}
in X such that {gxn} is a nondecreasing sequence in X and {gyn} is a nonincreasing sequence in
X. Since X is a complete metric space, there is (x, y) ∈ X×X such that gxn → x and gyn → y.
Since g is continuous, we have g(gxn) → gx and g(gyn) → gy. First, suppose that F is con-
tinuous. Then F (gxn, gyn) → F (x, y) and F (gyn, gxn) → F (y, x). On other hand, we have
F (gxn, gyn) = gF (xn, yn) = g(gxn+1) → gx and F (gyn, gxn) = gF (yn, xn) = g(gyn+1) → gy.
By uniqueness of limit, we get gx = F (x, y) and gy = F (y, x).
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6 Some new couple common fixed point · · · complete metric spaces

Now, suppose that (ii) holds. Since g(xn) is a nondecreasing sequence such that g(xn) → x,
g(yn) is a nonincreasing sequence such that g(yn) → y, and g is a nondecreasing function, we
get that g(gxn) � gx and g(gyn) � g(y) holds for all n ∈ N . By (13), we have

d2(g(gxn+1), F (x, y)) = d2(F (gxn, gyn), F (x, y))
≤ α min{d(ggxn+1, ggxn)d(F (x, y), ggxn), d(F (x, y), ggxn)d(ggxn+1, gx)}

+β min{d(ggxn+1, gx)d(F (x, y), gx), d(ggxn+1, gx)d(F (x, y), ggxn)}.

Letting n → ∞, we get d(g(x), F (x, y)) = 0 and hence g(x) = F (x, y). Similarly, we can
show that g(y) = F (y, x). Thus we proved that F and g have a coupled coincidence point.

Corollary 3.3. Let (X,�) be a partially ordered set and suppose there is a metric d on X
such that (X,d) is a complete metric space. Let F : X ×X → X. X be a mapping such that
F has the mixed monotone property on X such that there exist two elements x0, y0 ∈ X with
x0 � F (x0, y0) and y0 � F (y0, x0). Suppose there exist non-negative real numbers α, β with
α + β < 1 such that

d(F (x, y), F (u, v)) ≤ α min{d(F (x, y), x)d(F (u, v), x), d(F (u, v), x)d(F (x, y), u)}
+β min{d(F (x, y), u)d(F (u, v), u), d(F (x, y), u)d(F (u, v), x)} (14)

for all (x, y), (u, v) ∈ X ×X with x � u and y � v and also suppose either
(i) F is continuous or
(ii) X has the following property:

(a) if a nondecreasing sequence {xn} in X converges to x ∈ X, then xn � x for all n,
(b) if a nonincreasing sequence {yn} in X converges to y ∈ X, then yn � y for all n,

then there exist x, y ∈ X such that F (x, y) = x and F (y, x) = y, that is, F has a coupled fixed
point (x, y) ∈ X ×X.

Proof. In Theorem 3.2, if g = I, the identity mapping, then we have the result.

Corollary 3.4. Let (X,�) be a partially ordered set and suppose there is a metric d on
X such that (X,d) is a complete metric space. Let F : X ×X → X and g : X → X be map-
pings such that F has the mixed g-monotone property on X such that there exist two elements
x0, y0 ∈ X with g(x0) � F (x0, y0) and g(y0) � F (y0, x0). Suppose there exist non-negative
real numbers α and β with α + β < 1 such that

d2(F (x, y), F (u, v)) = (α + β) min
{
d(F (x, y), g(x))d(F (u, v), g(x)), d(F (u, v), g(x))d(F (x, y), g(u)),

d(F (x, y), g(u))d(F (u, v), g(u)), d(F (x, y), g(u))d(F (u, v), g(x))
}

for all (x, y), (u, v) ∈ X ×X with g(x) � g(u) and g(y) � g(v). Further suppose F (X ×X) ⊆
g(X), g is continuous nondecreasing and commutes with F , and also suppose either

(i) F is continuous or
(ii) X has the following property:

(a) if a nondecreasing sequence {xn} in X converges to x ∈ X, then xn � x for all n,
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Rakesh Tiwari and Savita Gupta 7

(b) if a nonincreasing sequence {yn} in X converges to y ∈ X, then yn � y for all n,
then there exist x, y ∈ X such that F (x, y) = g(x) and F (y, x) = g(y), that is, F and g have a
coupled coincident point (x, y) ∈ X ×X.

Proof. From Theorem 3.2, since α and β are non-negative real numbers, we have

(α + β) min {d(F (x, y), g(x))d(F (u, v), g(x)), d(F (u, v), g(x))d(F (x, y), g(u)),
d(F (x, y), g(u))d(F (u, v), g(u)), d(F (x, y), g(u))d(F (u, v), g(x))}

≤ α min {d(F (x, y), g(x))d(F (u, v), g(x)), d(F (u, v), g(x))d(F (x, y), g(u))}
+β min {d(F (x, y), g(u))d(F (u, v), g(u)), d(F (x, y), g(u))d(F (u, v), g(x))}

Now we will prove the existence and uniqueness theorem of a coupled common fixed point.
That is, if (X,�) is a partially ordered set, then we endow the product space X ×X with the
following partial order: for (x, y), (u, v) ∈ X ×X, (u, v) � (x, y) ⇔ x � u, y � v.

Theorem 3.5. For every (x, y), (y∗, x∗) ∈ X ×X there exists a (u, v) ∈ X ×X such that
(F (u, v), F (v, u)) is comparable to (F (x, y), F (y, x)) and (F (y∗, x∗), F (y∗, x∗)). Then F and g
have a unique coupled common fixed point, that is, there exists a unique (x, y) ∈ X ×X such
that x = g(x) = F (x, y) and y = g(y) = F (y, x).

Proof. We know that from Theorem 3.1, the set of coupled coincidence points of F and
g is non-empty. Suppose (x, y) and (y∗, x∗) are coupled coincidence points of F , that is,
g(x) = F (x, y)g(y) = F (y, x), g(x∗) = F (y∗, x∗) and g(y∗) = F (y∗, x∗),
then
g(x) = g(x∗) and g(y) = g(y∗). (15)

We suppose that, there exists (u, v) ∈ X × X such that (F (u, v), F (v, u)) is comparable
with (F (x, y), F (y, x)) and (F (x∗, y∗), F (y∗, x∗)). Put u0 = u, v0 = v, and taking u1, v1 ∈ X
so that g(u1) = F (u0, v0) and g(v1) = F (v0, u0). Then, similarly we can proof of Theorem 3.1,
we define sequences {g(un)}, {g(vn)}

g(un+1) = F (un, vn) and g(vn+1) = F (vn, un) for all n.

Now, set x0 = x, y0 = y, x∗0 = x∗, y∗0 = y. and similarly, define the sequences {g(xn)}, {g(yn)}
and g(x∗n), g(y∗n). Then it is prove that easily

g(xn) → F (x, y), g(yn) → F (y, x) ,g(x∗n) → F (x∗, y∗),
and g(y∗n) → F (y∗, x∗) for all n ≥ 1. Since (F (x, y), F (y, x)) = (g(x1), g(y1)) = (g(x), g(y))

and (F (u, v), F (v, u)) = (g(u1), g(v1)) are comparable, then g(x) � g(u1) and g(y) � g(v1). It
is show that easily (g(x), g(y)) and (g(un), g(vn)) are comparable, that is, g(x) � g(un) and
g(y) � g(vn) for all n ≥ 1. Then from (3), we have

d2(g(x), g(un+1)) = d2(F (x, y), F (un, vn)) ≤ α min {d(F (x, y), g(vn))d(F (u, v), g(vn)),
d(F (x, y), g(un))d(F (vn, un), g(un))}

+β min{d(F (x, y), g(un))d(F (un, vn), g(un))}, d(F (x, y), g(un))d(F (un, vn), g(un)).

Since F (x, y) = g(x), we have
d(g(x), g(un+1)) ≤ βmind(g(x), g(un)), d(F (un, vn), g(un)).
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8 Some new couple common fixed point · · · complete metric spaces

Hence
d(g(x), g(un+1)) ≤ βd(g(x), g(un)).

(16)

Now we again from (3), we have

d2(g(vn+1), g(y)) = d2(F (vn, un), F (y, x)) ≤ α min{d(F (vn, un), g(vn))d(F (x, y), g(vn)), d(F (y, x),
g(vn))d(F (y, x), g(y))}
+β min{d(F (vn, un), g(y))d(F (y, x), g(y)),
d(F (vn, un), g(y))d(F (y, x), g(vn))}.

Since F (y, x) = g(y), we have d(g(vn+1), g(y)) ≤ α min{d(F (vn, un), g(vn)), d(g(y), g(vn))}.
Hence
d(g(vn+1), g(y)) ≤ βd(g(vn), g(y)). (17)

Then by (17) and (18), we have

d2(g(x), g(un+1)) + d2(g(y), g(vn+1)) ≤ βd2(g(x), g(un)) + αd2(g(vn), g(y))
≤ (α + β)[d2(g(x), g(un)) + d2(g(y), g(vn))]
≤ (α + β)2[d2(g(x), g(un−1)) + d2(g(y), g(vn−1))]
.

.

.

≤ (α + β)n+1[d2(g(x), g(u0)) + d2(g(y), g(v0))].

Taking limit as n →∞,
we get limn→∞[d(g(x), g(un)) + d(g(y), g(vn))] = 0.
It implies that
limn→∞d(g(x), g(un)) = limn→∞d(g(y), g(vn)) = 0. (18)
Similarly, we can show that
limn→∞d(g(x∗), g(un)) = limn→∞d(g(y∗), g(vn)) = 0. (19)

By the triangle inequality, (18) and (19),
d(g(x), g(x∗)) ≤ d(g(x), g(un+1)) + d(g(x∗), g(un+1)) → 0 as n →∞,
d(g(y), g(y∗)) ≤ d(g(y), g(vn+1)) + d(g(y∗), g(vn+1)) → 0 as n →∞,

we have g(x) = g(x∗) and g(y) = g(y∗). Thus we have (16). This implies that (g(x), g(y)) =
(g(x∗), g(y∗)). Since g(x) = F (x, y) and g(y) = F (y, x), by commutativity of F and g, we have

g(g(x)) = g(F (x, y)) = F (g(x), g(y)) and g(g(y)) = g(F (y, x)) = F (g(y), g(x)). (20)
Denote g(x) = z, g(y) = w. Then from (21),
g(z) = F (z, w) and g(w) = F (w, z). (21)

That is (z,w) is a coupled coincidence point. Then from (21) with x∗ = z and y∗ = w it follows
g(z) = g(x) and g(w) = g(y), that is,
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g(z) = z and g(w) = w. (22)
From (21) and (22), z = g(z) = F (z, w) and w = g(w) = F (w, z). Therefore, (z,w) is a coupled
common fixed point of F and g.
To prove the uniqueness, suppose that (p, q) is another coupled common fixed point. Then by
(19) we have p = g(p) = g(z) = z and q = g(q) = g(w) = w.

Corollary 3.6. For every (x, y), (y∗, x∗) ∈ X ×X there exists a(u, v) ∈ X ×X such that
(F (u, v), F (v, u)) is comparable to (F (x, y), F (y, x)) and (F (x∗, y∗), F (y∗, x∗)). Then F has a
unique coupled fixed point, that is, there exist a unique (x, y) ∈ X ×X such that x = F (x, y)
and y = F (y, x).
Proof. In Theorem 3.3, if g = I, the identity mapping, then we have the result.

Theorem 3.7. From Theorem 3.1, if gx0 and gy0 are comparable then F and g have a
coupled coincidence point (x,y) such that gx = F (x, y) = F (y, x) = gy.
Proof. By Theorem 3.1 we construct two sequences xn and yn in X such that gxn → gx and
gyn → gy, where (x,y) is a coincidence point of F and g. Suppose gx0 � gy0, then it is an easy
matter to show that gxn � gyn and for all n ∈ N ∪ 0. Thus, by (3) we have

d2(gxn, gyn) = d2(F (xn−1, yn−1), F (yn−1, xn−1))
≤ α min {d(F (xn−1, yn−1), gxn−1)d(F (yn−1, xn−1), gxn−1),

d(F (yn−1, xn−1), gxn−1)d(F (xn−1, yn−1), gyn−1)}
+β min {d(F (xn−1, yn−1), gyn−1)d(F (yn−1, xn−1), gyn−1),
d(F (xn−1, yn−1), gyn−1)d(F (yn−1, xyn−1), gxn−1)}

= α min {d(gxn, gxn−1)d(gyn, gxn−1), d(gyn, gxn−1)d(gxn, gyn−1)}
+β min {d(gxn, gyn−1)d(gyn, gyn−1), d(gxn, gyn−1)d(gyn, gxn−1)}.

Letting the limit as n → ∞, we get d(gx, gy) = 0. Hence F (x, y) = gx = gy = F (y, x). A
similar argument can be used if gy0 � gx0.

Corollary 3.4. In addition to hypotheses of Theorem 3.1, if x0 and y0 are comparable
then F has a coupled fixed point of the form (x, x).

Proof. From Theorem 3.7, if g = I, the identity mapping, then we have the result. We
proof the Theorem 3.1 with the help of the following example.

Example 3.1. Suppose X = [0, 1]. Then (X,≤) is a partially ordered set with the natural
ordering of real numbers. Suppose d(x, y) = |x − y| for x, y ∈ X. Define g : X → X by
g(x) = x2 and F : X ×X → X by

F (x, y) =

{
x2−y2

10 , if x ≥ y;
0, if x < y;

Then
(1) (X, d) is a complete metric space.
(2) g(X) is complete.
(3) F (X ×X) ⊆ g(X) = X.
(4) X satisfies (i) and (ii) of Theorem 3.1.
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(5) F has the mixed g-monotone property.

(6) F and g satisfy

d2(F (x, y), F (u, v)) ≤ 1
5
min{d(F (x, y), g(x))d(F (u, v), g(x)), d(F (u, v), g(x))d(F (x, y), g(u))}

+
1
5
min{d(F (x, y), g(u))d(F (u, v), g(u)), d(F (x, y), g(u))d(F (u, v), g(x))}

for all gx � gu and gy � gv. Thus by Theorem 3.1, F and g have a coupled coincidence
point. Moreover (0, 0) is a coupled fixed point of F .

Proof. The proofs of (1)-(5) are clear. The proof of (6) is divided into the following cases:
Case 1. If x ≥ y and u < v, then we have

d2(F (x, y), F (u, v)) = d2(
x2 − y2

10
, 0) = (

x2 − y2

10
)2 ≤ x4

100
≤ 9x4

50

≤ 1
5
(
9x2

10
+

y2

10
)2 =

1
5
d2(

x2 − y2

10
, x2)

≤ 1
5
{d2(

x2 − y2

10
, x2), d2(0, x2)}

≤ 1
5
min{d(

x2 − y2

10
, x2)d(0, x2), d(0, x2)(

x2 − y2

10
, u2)}

+
1
5
min{d2(

x2 − y2

10
, u2)d(0, u2), d(0, x2)(

x2 − y2

10
, u2)}.

Case 2. If x < y and u ≥ v, then

d2(F (x, y), F (u, v)) = d2(
u2 − v2

10
, 0) = (

u2 − v2

10
)2 ≤ u4

100
≤ 9u4

50

≤ 1
5
(
9u2

10
+

v2

10
)2 =

1
5
d2(

u2 − v2

10
, u2)

≤ 1
5
{d2(

u2 − v2

10
, u2), d2(0, u2)}

≤ 1
5
min{d(

u2 − v2

10
, x2)d(0, x2), d(0, u2)(

u2 − v2

10
, x2)}

+
1
5
min{d2(

u2 − y2

10
, u2)d(0, u2), d(0, u2)(

u2 − v2

10
, x2)}.

Case 3. If x ≤ y and u ≥ v, then

d2(F (x, y), F (u, v)) = d2(0, 0) = 0 ≤ 1
5
min{d(0, x2)d(0, x2), d(0, x2)d(0, u2)}

+
1
5
min{d(0, u2)d(0, u2), d(0, u2)d(0, x2)}

≤ 1
5
d(0, x2)d(0, x2) +

1
5
d(0, u2)d(0, u2).
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Case 4. If x ≥ y and u ≥ v, then v ≤ y ≤ x ≤ u. Hence

d2(F (x, y), F (u, v)) = d2(
x2 − y2

10
,
u2 − v2

10
)

=
1

100
|u2 − v2 − x2 + y2|2

=
1

100
|u2 − x2 + y2 − v2|2

=
1

100
u4

≤ 1
5
min{d2(

x2 − y2

10
, u2), d2(

u2 − v2

10
, u2)}

≤ 1
5
min{d(

x2 − y2

10
, x2)d(

u2 − v2

10
, x2), d(

u2 − v2

10
, x2)d(

x2 − y2

10
, u2)}

+
1
5
min{d(

x2 − y2

10
, u2)d(

u2 − v2

10
, u2), d(

x2 − y2

10
, u2)d(

u2 − v2

10
, x2)}.

In all the above cases, inequality (3) of Theorem 3.1 is satisfied for α = β = 1
5 . Hence by

Theorem 3.1, (0, 0) is a unique coupled coincidence point. Indeed for x > y we have F (y, x) = 0
and since F (y, x) = g(y) we have y = 0. Then F (x, 0) = g(x) implies x = 0. The cases x = y
or x < y are similar.
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