Some new couple common fixed point theorems for a pair of commuting mappings involving quadratic terms in partially ordered complete metric spaces

Rakesh Tiwari and Savita Gupta ${ }^{1}$

1.

Abstract

The purpose of this paper is to establish some coupled coincidence point for a pair of commuting mappings involving quadratic terms in partially ordered complete metric spaces. We also present a result on the existence and uniqueness of coupled common fixed points. We provide an example to validate our results.

1.Introduction

S. Banach [5] proved the famous and well known Banach contraction principle concerning the fixed point of contraction mappings defined on a complete metric space. This theorem has been generalized and extended by many authors see for ($[1],[2],[9],[13],[15],[8])$ in various ways. Recently, Ran and Reurings [16], Bhaskar and Lakshmikantham [6], Nieto and Lopez [13], Agarwal, El-Gebeily and O'Regan [15] and Lakshmikantham and Ciric [7] presented some new results for contractions in partially ordered metric spaces. There after, many authors obtained many coupled coincidence and coupled fixed point theorems in ordered metric spaces (see [1],[3],[11],[12],[13],[14] as examples). For a given partially ordered set, Bhaskar and Lakshmikantham [6] introduced the concept of coupled fixed point of a mapping. Later Lakshmikantham and Ciric [10] investigated some more coupled fixed point theorems in partially ordered sets. Very recently, Samet [17] extended the results of Bhaskar and Lakshmikantham [6] to mappings satisfying a generalized Meir-Keeler contractive condition.

2.Preliminaries

Let us recall the following definitions of coupled fixed point and mixed monotone properties of a mapping.

Definition 2.1.([6]). Let (X, \preceq) be a partially ordered set and $F: X \times X \rightarrow X$. The mapping F is said to have the mixed monotone property if $F(x, y)$ is monotone nondecreasing in x and is monotone non increasing in y , that is, for any $x, y \in X, x_{1}, x_{2} \in X$, $x_{1} \preceq x_{2} \Rightarrow F\left(x_{1}, y\right) \preceq F\left(x_{2}, y\right)$ and $y_{1}, y_{2} \in X, y_{1} \preceq y_{2} \Rightarrow F\left(x, y_{1}\right) \succeq F\left(x, y_{2}\right)$. This definition

[^0]Key Words and Phrases : Coupled fixed point, Partially ordered set, Mixed monotone property.
coincides with the notion of a mixed monotone function on R_{2} and represents the usual total order in R .

Definition 2.2.([6]). We call an element $(x, y) \in X \times X$ a coupled fixed point of the mapping $F: X \times X \rightarrow X$ if $F(x, y)=x$ and $F(y, x)=y$.
The concept of the mixed monotone property is generalized in [10].
Definition 2.3. ([10]). Let (X, \preceq) be a partially ordered set and $F: X \times X \rightarrow X$ and $g: X \rightarrow X$. The mapping F is said to have the mixed g -monotone property if F is monotone g -nondecreasing in its first argument and is monotone g-nonincreasing in its second argument, that is, for any $x, y \in X$
$x_{1}, x_{2} \in X, g\left(x_{1}\right) \preceq g\left(x_{2}\right) \Rightarrow F\left(x_{1}, y\right) \preceq F\left(x_{2}, y\right)$
and $y_{1}, y_{2} \in X, g\left(y_{1}\right) \preceq g\left(y_{2}\right) \Rightarrow F\left(x, y_{1}\right) \succeq F\left(x, y_{2}\right)$.
Clearly, if g is the identity mapping, then Definition 2.3 reduces to Definition 2.1.
Definition 2.4. [6]. An element $(x, y) \in X \times X$ is called a coupled coincidence point of the mappings $F: X \times X \longrightarrow X$ and $g: X \times X$ if $F(x, y)=g(x)$, and $F(y, x)=g(y)$.

Definition 2.5. Let (X, d) be a metric space and $F: X \times X \rightarrow X$ and $g: X \rightarrow X$ be mappings. We say F and g commute if $F(g(x), g(y))=g(F(x, y))$ for all $x, y \in X$.

In this paper we proved, Some new couple common fixed point theorems for a pair of commuting mappings involving quadratic terms in partially ordered complete metric space.

3. Main result

The following theorems are is our main results.
Theorem 3.1. Let (X, d, \preceq) be an ordered metric space. Let $F: X \times X \rightarrow X$ and $g: X \rightarrow X$ be mappings such that F has the mixed g -monotone property on X such that there exist two elements $x_{0}, y_{0} \in X$ with $g\left(x_{0}\right) \preceq F\left(x_{0}, y_{0}\right)$ and $g\left(y_{0}\right) \succeq F\left(y_{0}, x_{0}\right)$. Suppose there exist non-negative real numbers α, β, with $\alpha+\beta<1$ such that

$$
\begin{align*}
d^{2}(F(x, y), F(u, v)) \leq & \alpha \min \{d(F(x, y), g(x)) d(F(u, v), g(x)), d(F(u, v), g(x)) d(F(x, y), g(u))\} \\
& +\beta \min \{d(F(x, y), g(u)) d(F(u, v), g(u)), d(F(u, v), g(x)) d(F(x, y), g(u))\} \tag{3}
\end{align*}
$$

for every $(x, y),(u, v) \in X \times X$ with $g(x) \preceq g(u)$ and $g(y) \succeq g(v)$. Further suppose $F(X \times X) \rightarrow$ $g(X)$ and $g(X)$ is a complete subspace of X. Also, suppose that X satisfies the following properties:
(i) if a nondecreasing sequence $\left\{x_{n}\right\}$ in X converges to $x \in X$, then $x_{n} \preceq x$ for all n ,
(ii) if a nonincreasing sequence $\left\{y_{n}\right\}$ in X converges to $y \in X$, then $y_{n} \succeq y$ for all n . Then there exist $x, y \in X$ such that $F(x, y)=g(x)$ and $F(y, x)=g(y)$, that is, F and g have a coupled coincidence point $(x, y) \in X \times X$.

Proof. Suppose $x_{0}, y_{0} \in X$ be such that $g\left(x_{0}\right) \preceq F\left(x_{0}, y_{0}\right)$ and $g\left(y_{0}\right) \succeq F\left(y_{0}, x_{0}\right)$. Since $F(X \times X) \subseteq g(X)$, we can choose $x_{1}, y_{1} \in X$ such that $g\left(x_{1}\right)=F\left(x_{0}, y_{0}\right)$ and $g\left(y_{1}\right)=F\left(y_{0}, x_{0}\right)$. Similarly we construct, $g\left(x_{2}\right)=F\left(x_{1}, y_{1}\right)$ and $g\left(y_{2}\right)=F\left(y_{1}, x_{1}\right)$. Continuing in this way we
construct two sequences $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ in X such that, $g\left(x_{n+1}\right)=F\left(x_{n}, y_{n}\right)$ and $g\left(y_{n+1}\right)=F\left(y_{n}, x_{n}\right)$ for all $n \geq 0$.
Now we prove that for all $n \geq 0$,

$$
\begin{equation*}
g\left(x_{n}\right) \preceq g\left(x_{n+1}\right) \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
g\left(y_{n}\right) \succeq g\left(y_{n+1}\right) . \tag{6}
\end{equation*}
$$

We shall use the method of mathematical induction. Let $\mathrm{n}=0$. Since $g\left(x_{0}\right) \preceq F\left(x_{0}, y_{0}\right)$ and $g\left(y_{0}\right) \succeq F\left(y_{0}, x_{0}\right)$, in view of $g\left(x_{1}\right)=F\left(x_{0}, y_{0}\right)$ and $g\left(y_{1}\right)=F\left(y_{0}, x_{0}\right)$, we have $g\left(x_{0}\right) \preceq g\left(x_{1}\right)$ and $g\left(y_{0}\right) \succeq g\left(y_{1}\right)$, that is, (5) and (6) hold for $\mathrm{n}=0$. We presume that (5) and (6) hold for some $n>0$. As F has the mixed g-monotone property and $g\left(x_{n}\right) \preceq g\left(x_{n+1}\right), g\left(y_{n}\right) \succeq g\left(y_{n+1}\right)$, from (4), we get

$$
\begin{equation*}
g\left(x_{n+1}\right)=F\left(x_{n}, y_{n}\right) \preceq F\left(x_{n+1}, y n\right) \tag{7}
\end{equation*}
$$

and

$$
\begin{equation*}
F\left(y_{n+1}, x_{n}\right) \succeq F\left(y_{n}, x_{n}\right)=g\left(y_{n+1}\right) . \tag{8}
\end{equation*}
$$

Also for the same reason we have $g(x n+2)=F\left(x_{n+1}, y_{n+1}\right) \succeq F\left(x_{n+1}, y_{n}\right)$ and $F\left(y_{n+1}, x_{n}\right) \succeq$ $F\left(y_{n+1}, x_{n+1}\right)=g\left(y_{n+2}\right)$.
Then from (4) and (5), we obtain $g\left(x_{n+1}\right) \preceq g\left(x_{n+2}\right)$ and $g\left(y_{n+1}\right) \succeq g\left(y_{n+2}\right)$. Thus by the mathematical induction, we conclude that (5) and (6) hold for all $n=0$.
We check easily that

$$
g\left(x_{0}\right) \preceq g\left(x_{1}\right) \preceq g\left(x_{2}\right) \preceq \ldots \preceq g\left(x_{n+1}\right) \preceq \ldots
$$

and

$$
g\left(y_{0}\right) \succeq g\left(y_{1}\right) \succeq g\left(y_{2}\right) \succeq \ldots . \succeq g\left(y_{n+1}\right) \succeq \ldots
$$

Since

$$
g\left(x_{n}\right) \succeq g\left(x_{n-1}\right) \text { and } g\left(y_{n}\right) \preceq g\left(y_{n-1}\right),
$$

Also for the same reason we have

$$
g\left(x_{n+2}\right)=F\left(x_{n+1}, y_{n+1}\right) \succeq F\left(x_{n+1}, y_{n}\right) \text { and } F\left(y_{n+1}, x_{n}\right) \preceq F\left(y_{n+1}, x_{n+1}\right)=g(y n+2) .
$$

Then from (4) and (5), we obtain $g\left(x_{n+1}\right) \preceq g\left(x_{n+2}\right)$ and $g\left(y_{n+1}\right) \succeq g\left(y_{n+2}\right)$. Thus by the mathematical induction, we conclude that (5) and (6) hold for all $n \geq 0$. We check easily that

$$
g\left(x_{0}\right) \preceq g\left(x_{1}\right) \preceq g\left(x_{2}\right) \preceq \preceq g\left(x_{n+1}\right) \preceq \ldots
$$

and

$$
g\left(y_{0}\right) \succeq g\left(y_{1}\right) \succeq g\left(y_{2}\right) \succeq \succeq g\left(y_{n+1}\right) \succeq \ldots \ldots .
$$

Since $g\left(x_{n}\right) \succeq g\left(x_{n-1}\right)$ and $g\left(y_{n}\right) \preceq g\left(y_{n-1}\right)$, from (3) and (4), we have

$$
\begin{aligned}
d^{2}\left(g\left(x_{n+1}\right), g\left(x_{n}\right)\right)= & d^{2}\left(F\left(x_{n}, y_{n}\right), F\left(x_{n-1}, y_{n-1}\right)\right) \\
\leq & \alpha \min \left\{d\left(F\left(x_{n}, y_{n}\right), g\left(x_{n}\right)\right) d\left(F\left(x_{n-1}, y_{n-1}\right), g\left(x_{n}\right)\right),\right. \\
& \left.d\left(F\left(x_{n-1}, y_{n-1}\right), g\left(x_{n}\right)\right) d\left(F\left(x_{n}, y_{n}\right), g\left(x_{n-1}\right)\right)\right\} \\
& +\beta \min \left\{d\left(F\left(x_{n}, y_{n}\right), g\left(x_{n-1}\right)\right) d\left(F\left(x_{n-1}, y_{n-1}\right), g\left(x_{n-1}\right)\right),\right. \\
& \left.d\left(F\left(x_{n}, y_{n}\right), g\left(x_{n-1}\right)\right) d\left(F\left(x_{n-1}, y_{n-1}\right), g\left(x_{n}\right)\right)\right\}
\end{aligned}
$$

or
$d^{2}\left(g\left(x_{n+1}\right), g\left(x_{n}\right)\right) \leq \beta d^{2}\left(g\left(x_{n}\right), g\left(x_{n-1}\right)\right)$.
Similarly, since $g\left(y_{n-1}\right) \succeq g\left(y_{n}\right)$ and $g\left(x_{n-1}\right) \preceq g\left(x_{n}\right)$, from (3) and (4), we have
$d^{2}\left(g\left(y_{n}\right), g\left(y_{n+1}\right)\right) \leq \alpha d^{2}\left(g\left(y_{n}\right), g\left(y_{n-1}\right)\right)$.
From (9) and (10), we have

$$
\begin{aligned}
d^{2}\left(g\left(x_{n+1}\right), g\left(x_{n}\right)\right)+d^{2}\left(g\left(y_{n}\right), g\left(y_{n+1}\right)\right) & \leq \beta d^{2}\left(g\left(x_{n}\right), g\left(x_{n-1}\right)\right)+\alpha d^{2}\left(g\left(y_{n}\right), g\left(y_{n-1}\right)\right) \\
& \leq(\alpha+\beta) d^{2}\left(g\left(x_{n}\right), g\left(x_{n-1}\right)\right)+(\alpha+\beta) d^{2}\left(g\left(y_{n}\right), g(y n-1)\right) \\
& =(\alpha+\beta)\left[d^{2}\left(g\left(x_{n}\right), g\left(x_{n-1}\right)\right)+d^{2}\left(g\left(y_{n}\right), g\left(y_{n-1}\right)\right)\right] .
\end{aligned}
$$

Setting $\rho_{n}=d^{2}\left(g\left(x_{n+1}\right), g(x n)\right)+d^{2}\left(g\left(y_{n+1}\right), g(y n)\right)$ and $\delta=\alpha+\beta$, we get the sequence $\left\{\rho_{n}\right\}$ is decreasing as

$$
0 \leq \rho_{n} \leq \delta \rho_{n-1} \leq \delta \rho_{n-2} \leq \ldots \leq \delta^{n} \rho_{0}
$$

This implies
$\lim _{n \rightarrow \infty} \rho_{n}=\lim _{n \rightarrow \infty}\left[d^{2}\left(g\left(x_{n+1}\right), g\left(x_{n}\right)\right)+d^{2}\left(g\left(y_{n+1}\right), g\left(y_{n}\right)\right)\right]=0$.
Thus,

$$
\lim _{n \rightarrow \infty} d^{2}\left(g\left(x_{n+1}\right), g\left(x_{n}\right)\right)=0 \text { and } \lim _{n \rightarrow \infty} d^{2}\left(g\left(y_{n+1}\right), g\left(y_{n}\right)\right)=0 .
$$

In what follows, we shall prove that $\left\{g\left(x_{n}\right)\right\}$ and $\left\{g\left(y_{n}\right)\right\}$ are Cauchy sequences. For each $m \geq n$, we have

$$
d^{2}\left(g\left(x_{m}\right), g\left(x_{n}\right)\right) \leq d^{2}\left(g\left(x_{m}\right), g\left(x_{m-1}\right)\right)+d^{2}\left(g\left(x_{m-1}\right), g\left(x_{m-2}\right)\right)+\ldots .+d^{2}\left(g\left(x_{n+1}\right), g\left(x_{n}\right)\right)
$$

and

$$
d^{2}\left(g\left(y_{m}\right), g\left(y_{n}\right)\right) \leq d^{2}\left(g\left(y_{m} m\right), g\left(y_{m-1}\right)\right)+d^{2}\left(g\left(y_{m 1}\right), g\left(y_{m-2}\right)\right)+\ldots+d^{2}\left(g\left(y_{n+1}\right), g\left(y_{n}\right)\right) .
$$

Therefore

$$
\begin{align*}
d^{2}\left(g\left(x_{m}\right), g\left(x_{n}\right)\right)+d^{2}(g(y m), g(y n)) & \leq \rho_{m-1}+\rho_{m-2}+\ldots+\rho_{n} \\
& \leq\left(\delta^{m-1}+\delta^{m-2}+\ldots+\delta^{n}\right) \rho_{0} \\
& \leq \frac{\delta^{n}}{1-\delta} \rho_{0} \tag{12}
\end{align*}
$$

which implies that

$$
\lim _{n, m \rightarrow \infty}\left[d^{2}\left(g\left(x_{m}\right), g\left(x_{n}\right)\right)+d^{2}\left(g\left(y_{m}\right), g\left(y_{n}\right)\right)\right]=0
$$

This implies that $\left\{g\left(x_{n}\right)\right\}$ and $\left\{g\left(y_{n}\right)\right\}$ are Cauchy sequences in $g(X)$. Since $g(X)$ is a complete subspace of X, there exists $(x, y) \in X \times X$ such that $g\left(x_{n}\right) \rightarrow g(x)$ and $g\left(y_{n}\right) \rightarrow g(y)$. Since $\left\{g\left(x_{n}\right)\right\}$ is a nondecreasing sequence and $g\left(x_{n}\right) \rightarrow g(x)$ and as $\left\{g\left(y_{n}\right)\right\}$ is a nonincreasing sequence and $g\left(y_{n}\right) \rightarrow g(y)$, by assumption we have $g\left(x_{n}\right) \preceq g(x)$ and $g\left(y_{n}\right) \succeq g(y)$ for all n. Since

$$
\begin{aligned}
d^{2}\left(g\left(x_{n+1}\right), F(x, y)\right)= & d^{2}\left(F\left(x_{n}, y_{n}\right), F(x, y)\right) \\
\leq & \alpha \min \left\{d\left(g\left(x_{n+1}\right), g\left(x_{n}\right)\right) d\left(F(x, y), g\left(x_{n}\right)\right), d\left(F(x, y), g\left(x_{n}\right)\right) d\left(g\left(x_{n+1}\right), g(x)\right)\right\} \\
& +\beta \min \left\{d\left(g\left(x_{n+1}\right), g(x)\right) d(F(x, y), g(x)), d\left(F(x, y), g\left(x_{n}\right)\right) d\left(g\left(x_{n+1}\right), g(x)\right)\right\} .
\end{aligned}
$$

Taking the limit as $n \rightarrow \infty$ we get $d^{2}(g(x), F(x, y))=0$. Hence $g(x)=F(x, y)$. Similarly, we can show that $g(y)=F(y, x)$. Thus we proved that F and g have a coupled coincidence point. This completes the proof.

Theorem 3.2. Let (X, \preceq) be a partially ordered set and suppose there is a metric d on X such that (X, d) is a complete metric space. Let $F: X \times X \rightarrow X$ and $g: X \rightarrow X$ be mappings such that F has the mixed g-monotone property on X such that there exist two elements $x_{0}, y_{0} \in X$ with $g\left(x_{0}\right) \preceq F\left(x_{0}, y_{0}\right)$ and $g\left(y_{0}\right) \succeq F\left(y_{0}, x_{0}\right)$. Suppose there exist non-negative real numbers α, β with $\alpha+\beta<1$ such that

$$
\begin{align*}
d^{2}(F(x, y), F(u, v))= & \alpha \min \{d(F(x, y), g(x)) d(F(u, v), g(x)), d(F(u, v), g(x)) d(F(x, y), g(u))\} \\
& +\beta \min \{d(F(x, y), g(u)) d(F(u, v), g(u)), d(F(x, y) \\
& g(u)) d(F(u, v), g(x))\} \tag{13}
\end{align*}
$$

for all $(x, y),(u, v) \in X \times X$ with $g(x) \preceq g(u)$ and $g(y) \succeq g(v)$. Further suppose $F(X \times X) \subseteq$ $g(X), g$ is continuous nondecreasing and commutes with F, and also suppose either
(i) F is continuous or
(ii) X has the following property:
(a) if a nondecreasing sequence $\left\{x_{n}\right\}$ in X converges to $x \in X$, then $x_{n} \preceq x$ for all n ,
(b) if a nonincreasing sequence $\left\{y_{n}\right\}$ in X converges to $y \in X$, then $y_{n} \succeq y$ for all n ,

Then there exist $x, y \in X$ such that $F(x, y)=x$ and $F(y, x)=y$, that is, F has a coupled fixed point $(x, y) \in X \times X$.
Proof. Following the proof of Theorem 3.1, we have two Cauchy sequences $\left\{g x_{n}\right\}$ and $\left\{g y_{n}\right\}$ in X such that $\left\{g x_{n}\right\}$ is a nondecreasing sequence in X and $\left\{g y_{n}\right\}$ is a nonincreasing sequence in X . Since X is a complete metric space, there is $(x, y) \in X \times X$ such that $g x_{n} \rightarrow x$ and $g y_{n} \rightarrow y$. Since g is continuous, we have $g\left(g x_{n}\right) \rightarrow g x$ and $g\left(g y_{n}\right) \rightarrow g y$. First, suppose that F is continuous. Then $F\left(g x_{n}, g y_{n}\right) \rightarrow F(x, y)$ and $F\left(g y_{n}, g x_{n}\right) \rightarrow F(y, x)$. On other hand, we have $F\left(g x_{n}, g y_{n}\right)=g F\left(x_{n}, y_{n}\right)=g\left(g x_{n+1}\right) \rightarrow g x$ and $F\left(g y_{n}, g x_{n}\right)=g F\left(y_{n}, x_{n}\right)=g\left(g y_{n+1}\right) \rightarrow g y$. By uniqueness of limit, we get $g x=F(x, y)$ and $g y=F(y, x)$.

Now, suppose that (ii) holds. Since $g\left(x_{n}\right)$ is a nondecreasing sequence such that $g\left(x_{n}\right) \rightarrow x$, $g\left(y_{n}\right)$ is a nonincreasing sequence such that $g\left(y_{n}\right) \rightarrow y$, and g is a nondecreasing function, we get that $g\left(g x_{n}\right) \preceq g x$ and $g\left(g y_{n}\right) \succeq g(y)$ holds for all $n \in N$. By (13), we have

$$
\begin{aligned}
d^{2}\left(g\left(g x_{n+1}\right), F(x, y)\right)= & d^{2}\left(F\left(g x_{n}, g y_{n}\right), F(x, y)\right) \\
\leq & \alpha \min \left\{d\left(g g x_{n+1}, g g x_{n}\right) d\left(F(x, y), g g x_{n}\right), d\left(F(x, y), g g x_{n}\right) d\left(g g x_{n+1}, g x\right)\right\} \\
& +\beta \min \left\{d\left(g g x_{n+1}, g x\right) d(F(x, y), g x), d\left(g g x_{n+1}, g x\right) d\left(F(x, y), g g x_{n}\right)\right\} .
\end{aligned}
$$

Letting $n \rightarrow \infty$, we get $d(g(x), F(x, y))=0$ and hence $g(x)=F(x, y)$. Similarly, we can show that $g(y)=F(y, x)$. Thus we proved that F and g have a coupled coincidence point.

Corollary 3.3. Let (X, \preceq) be a partially ordered set and suppose there is a metric d on X such that (X, d) is a complete metric space. Let $F: X \times X \rightarrow X$. X be a mapping such that F has the mixed monotone property on X such that there exist two elements $x_{0}, y_{0} \in X$ with $x_{0} \preceq F\left(x_{0}, y_{0}\right)$ and $y_{0} \succeq F\left(y_{0}, x_{0}\right)$. Suppose there exist non-negative real numbers α, β with $\alpha+\beta<1$ such that

$$
\begin{align*}
d(F(x, y), F(u, v)) \leq & \alpha \min \{d(F(x, y), x) d(F(u, v), x), d(F(u, v), x) d(F(x, y), u)\} \\
& +\beta \min \{d(F(x, y), u) d(F(u, v), u), d(F(x, y), u) d(F(u, v), x)\} \tag{14}
\end{align*}
$$

for all $(x, y),(u, v) \in X \times X$ with $x \succeq u$ and $y \preceq v$ and also suppose either
(i) F is continuous or
(ii) X has the following property:
(a) if a nondecreasing sequence $\left\{x_{n}\right\}$ in X converges to $x \in X$, then $x_{n} \preceq x$ for all n ,
(b) if a nonincreasing sequence $\left\{y_{n}\right\}$ in X converges to $y \in X$, then $y_{n} \succeq y$ for all n ,
then there exist $x, y \in X$ such that $F(x, y)=x$ and $F(y, x)=y$, that is, F has a coupled fixed point $(x, y) \in X \times X$.

Proof. In Theorem 3.2, if $\mathrm{g}=\mathrm{I}$, the identity mapping, then we have the result.
Corollary 3.4. Let (X, \preceq) be a partially ordered set and suppose there is a metric d on X such that (X, d) is a complete metric space. Let $F: X \times X \rightarrow X$ and $g: X \rightarrow X$ be mappings such that F has the mixed g-monotone property on X such that there exist two elements $x_{0}, y_{0} \in X$ with $g\left(x_{0}\right) \preceq F\left(x_{0}, y_{0}\right)$ and $g\left(y_{0}\right) \succeq F\left(y_{0}, x_{0}\right)$. Suppose there exist non-negative real numbers α and β with $\alpha+\beta<1$ such that

$$
\begin{aligned}
d^{2}(F(x, y), F(u, v))= & (\alpha+\beta) \min \{d(F(x, y), g(x)) d(F(u, v), g(x)), d(F(u, v), g(x)) d(F(x, y), g(u)), \\
& d(F(x, y), g(u)) d(F(u, v), g(u)), d(F(x, y), g(u)) d(F(u, v), g(x))\}
\end{aligned}
$$

for all $(x, y),(u, v) \in X \times X$ with $g(x) \preceq g(u)$ and $g(y) \succeq g(v)$. Further suppose $F(X \times X) \subseteq$ $g(X), \mathrm{g}$ is continuous nondecreasing and commutes with F , and also suppose either
(i) F is continuous or
(ii) X has the following property:
(a) if a nondecreasing sequence $\left\{x_{n}\right\}$ in X converges to $x \in X$, then $x_{n} \preceq x$ for all n ,
(b) if a nonincreasing sequence $\left\{y_{n}\right\}$ in X converges to $y \in X$, then $y_{n} \succeq y$ for all n , then there exist $x, y \in X$ such that $F(x, y)=g(x)$ and $F(y, x)=g(y)$, that is, F and g have a coupled coincident point $(x, y) \in X \times X$.

Proof. From Theorem 3.2, since α and β are non-negative real numbers, we have

$$
\begin{array}{r}
(\alpha+\beta) \min \{d(F(x, y), g(x)) d(F(u, v), g(x)), d(F(u, v), g(x)) d(F(x, y), g(u)), \\
d(F(x, y), g(u)) d(F(u, v), g(u)), d(F(x, y), g(u)) d(F(u, v), g(x))\} \\
\leq \alpha \min \{d(F(x, y), g(x)) d(F(u, v), g(x)), d(F(u, v), g(x)) d(F(x, y), g(u))\} \\
+\beta \min \{d(F(x, y), g(u)) d(F(u, v), g(u)), d(F(x, y), g(u)) d(F(u, v), g(x))\}
\end{array}
$$

Now we will prove the existence and uniqueness theorem of a coupled common fixed point. That is, if (X, \preceq) is a partially ordered set, then we endow the product space $X \times X$ with the following partial order: for $(x, y),(u, v) \in X \times X,(u, v) \preceq(x, y) \Leftrightarrow x \succeq u, y \preceq v$.

Theorem 3.5. For every $(x, y),\left(y^{*}, x^{*}\right) \in X \times X$ there exists a $(u, v) \in X \times X$ such that $(F(u, v), F(v, u))$ is comparable to $(F(x, y), F(y, x))$ and $\left(F\left(y^{*}, x^{*}\right), F\left(y^{*}, x^{*}\right)\right)$. Then F and g have a unique coupled common fixed point, that is, there exists a unique $(x, y) \in X \times X$ such that $x=g(x)=F(x, y)$ and $y=g(y)=F(y, x)$.

Proof. We know that from Theorem 3.1, the set of coupled coincidence points of F and g is non-empty. Suppose (x, y) and $\left(y^{*}, x^{*}\right)$ are coupled coincidence points of F , that is, $g(x)=F(x, y) g(y)=F(y, x), g\left(x^{*}\right)=F\left(y^{*}, x^{*}\right)$ and $g\left(y^{*}\right)=F\left(y^{*}, x^{*}\right)$,
then
$g(x)=g\left(x^{*}\right)$ and $g(y)=g\left(y^{*}\right)$.
We suppose that, there exists $(u, v) \in X \times X$ such that $(F(u, v), F(v, u))$ is comparable with $(F(x, y), F(y, x))$ and $\left(F\left(x^{*}, y^{*}\right), F\left(y^{*}, x^{*}\right)\right)$. Put $u_{0}=u, v_{0}=v$, and taking $u_{1}, v_{1} \in X$ so that $g\left(u_{1}\right)=F\left(u_{0}, v_{0}\right)$ and $g\left(v_{1}\right)=F\left(v_{0}, u_{0}\right)$. Then, similarly we can proof of Theorem 3.1, we define sequences $\left\{g\left(u_{n}\right)\right\},\left\{g\left(v_{n}\right)\right\}$

$$
g\left(u_{n+1}\right)=F\left(u_{n}, v_{n}\right) \text { and } g\left(v_{n+1}\right)=F\left(v_{n}, u_{n}\right) \text { for all } \mathrm{n} .
$$

Now, set $x_{0}=x, y_{0}=y, x_{0}^{*}=x^{*}, y_{0}^{*}=y$. and similarly, define the sequences $\left\{g\left(x_{n}\right)\right\},\left\{g\left(y_{n}\right)\right\}$ and $g\left(x_{n}^{*}\right), g\left(y_{n}^{*}\right)$. Then it is prove that easily
$g\left(x_{n}\right) \rightarrow F(x, y), g\left(y_{n}\right) \rightarrow F(y, x), g\left(x_{n}^{*}\right) \rightarrow F\left(x^{*}, y^{*}\right)$,
and $g\left(y_{n}^{*}\right) \rightarrow F\left(y^{*}, x^{*}\right)$ for all $n \geq 1$. Since $(F(x, y), F(y, x))=\left(g\left(x_{1}\right), g\left(y_{1}\right)\right)=(g(x), g(y))$ and $(F(u, v), F(v, u))=\left(g\left(u_{1}\right), g\left(v_{1}\right)\right)$ are comparable, then $g(x) \preceq g\left(u_{1}\right)$ and $g(y) \succeq g\left(v_{1}\right)$. It is show that easily $(g(x), g(y))$ and $\left(g\left(u_{n}\right), g\left(v_{n}\right)\right)$ are comparable, that is, $g(x) \preceq g\left(u_{n}\right)$ and $g(y) \succeq g\left(v_{n}\right)$ for all $n \geq 1$. Then from (3), we have

$$
\begin{array}{r}
d^{2}\left(g(x), g\left(u_{n+1}\right)\right)=d^{2}\left(F(x, y), F\left(u_{n}, v_{n}\right)\right) \leq \alpha \min \left\{d\left(F(x, y), g\left(v_{n}\right)\right) d\left(F(u, v), g\left(v_{n}\right)\right),\right. \\
\left.d\left(F(x, y), g\left(u_{n}\right)\right) d\left(F\left(v_{n}, u_{n}\right), g\left(u_{n}\right)\right)\right\} \\
+\beta \min \left\{d\left(F(x, y), g\left(u_{n}\right)\right) d\left(F\left(u_{n}, v_{n}\right), g\left(u_{n}\right)\right)\right\}, d\left(F(x, y), g\left(u_{n}\right)\right) d\left(F\left(u_{n}, v_{n}\right), g\left(u_{n}\right)\right) .
\end{array}
$$

Since $F(x, y)=g(x)$, we have
$d\left(g(x), g\left(u_{n+1}\right)\right) \leq \beta \operatorname{mind}\left(g(x), g\left(u_{n}\right)\right), d\left(F\left(u_{n}, v_{n}\right), g\left(u_{n}\right)\right)$.

Hence
$d\left(g(x), g\left(u_{n+1}\right)\right) \leq \beta d\left(g(x), g\left(u_{n}\right)\right)$.

Now we again from (3), we have

$$
\begin{aligned}
d^{2}\left(g\left(v_{n+1}\right), g(y)\right)=d^{2}\left(F\left(v_{n}, u_{n}\right), F(y, x)\right) \leq & \alpha \min \left\{d\left(F\left(v_{n}, u_{n}\right), g\left(v_{n}\right)\right) d\left(F(x, y), g\left(v_{n}\right)\right), d(F(y, x),\right. \\
& \left.\left.g\left(v_{n}\right)\right) d(F(y, x), g(y))\right\} \\
& +\beta \min \left\{d\left(F\left(v_{n}, u_{n}\right), g(y)\right) d(F(y, x), g(y)),\right. \\
& \left.d\left(F\left(v_{n}, u_{n}\right), g(y)\right) d\left(F(y, x), g\left(v_{n}\right)\right)\right\} .
\end{aligned}
$$

Since $F(y, x)=g(y)$, we have $d\left(g\left(v_{n+1}\right), g(y)\right) \leq \alpha \min \left\{d\left(F\left(v_{n}, u_{n}\right), g\left(v_{n}\right)\right), d\left(g(y), g\left(v_{n}\right)\right)\right\}$.
Hence
$d\left(g\left(v_{n+1}\right), g(y)\right) \leq \beta d\left(g\left(v_{n}\right), g(y)\right)$.
Then by (17) and (18), we have

$$
\begin{aligned}
d^{2}\left(g(x), g\left(u_{n+1}\right)\right)+d^{2}\left(g(y), g\left(v_{n+1}\right)\right) & \leq \beta d^{2}\left(g(x), g\left(u_{n}\right)\right)+\alpha d^{2}\left(g\left(v_{n}\right), g(y)\right) \\
& \leq(\alpha+\beta)\left[d^{2}(g(x), g(u n))+d^{2}(g(y), g(v n))\right] \\
& \leq(\alpha+\beta)^{2}\left[d^{2}\left(g(x), g\left(u_{n-1}\right)\right)+d^{2}\left(g(y), g\left(v_{n-1}\right)\right)\right] \\
& \cdot \\
& \cdot \\
& \cdot \\
& \leq(\alpha+\beta)^{n+1}\left[d^{2}\left(g(x), g\left(u_{0}\right)\right)+d^{2}\left(g(y), g\left(v_{0}\right)\right)\right] .
\end{aligned}
$$

Taking limit as $n \rightarrow \infty$,
we get $\lim _{n \rightarrow \infty}\left[d\left(g(x), g\left(u_{n}\right)\right)+d\left(g(y), g\left(v_{n}\right)\right)\right]=0$.
It implies that
$\lim _{n \rightarrow \infty} d\left(g(x), g\left(u_{n}\right)\right)=\lim _{n \rightarrow \infty} d\left(g(y), g\left(v_{n}\right)\right)=0$.
Similarly, we can show that
$\lim _{n \rightarrow \infty} d\left(g\left(x^{*}\right), g\left(u_{n}\right)\right)=\lim _{n \rightarrow \infty} d\left(g\left(y^{*}\right), g\left(v_{n}\right)\right)=0$.
By the triangle inequality, (18) and (19),
$d\left(g(x), g\left(x^{*}\right)\right) \leq d\left(g(x), g\left(u_{n+1}\right)\right)+d\left(g\left(x^{*}\right), g\left(u_{n+1}\right)\right) \rightarrow 0$ as $n \rightarrow \infty$,
$d\left(g(y), g\left(y^{*}\right)\right) \leq d\left(g(y), g\left(v_{n+1}\right)\right)+d\left(g\left(y^{*}\right), g\left(v_{n+1}\right)\right) \rightarrow 0$ as $n \rightarrow \infty$,
we have $g(x)=g\left(x^{*}\right)$ and $g(y)=g\left(y^{*}\right)$. Thus we have (16). This implies that $(g(x), g(y))=$ $\left(g\left(x^{*}\right), g\left(y^{*}\right)\right)$. Since $g(x)=F(x, y)$ and $g(y)=F(y, x)$, by commutativity of F and g , we have

$$
\begin{equation*}
g(g(x))=g(F(x, y))=F(g(x), g(y)) \text { and } g(g(y))=g(F(y, x))=F(g(y), g(x)) . \tag{20}
\end{equation*}
$$

Denote $g(x)=z, g(y)=w$. Then from (21),
$g(z)=F(z, w)$ and $g(w)=F(w, z)$.
That is (z, w) is a coupled coincidence point. Then from (21) with $x^{*}=z$ and $y^{*}=w$ it follows $g(z)=g(x)$ and $g(w)=g(y)$, that is,
$g(z)=z$ and $g(w)=w$.
From (21) and (22), $z=g(z)=F(z, w)$ and $w=g(w)=F(w, z)$. Therefore, ($\mathrm{z}, \mathrm{w})$ is a coupled common fixed point of F and g .
To prove the uniqueness, suppose that (p, q) is another coupled common fixed point. Then by (19) we have $p=g(p)=g(z)=z$ and $q=g(q)=g(w)=w$.

Corollary 3.6. For every $(x, y),\left(y^{*}, x^{*}\right) \in X \times X$ there exists $a(u, v) \in X \times X$ such that $(F(u, v), F(v, u))$ is comparable to $(F(x, y), F(y, x))$ and $\left(F\left(x^{*}, y^{*}\right), F\left(y^{*}, x^{*}\right)\right)$. Then F has a unique coupled fixed point, that is, there exist a unique $(x, y) \in X \times X$ such that $x=F(x, y)$ and $y=F(y, x)$.
Proof. In Theorem 3.3, if $\mathrm{g}=\mathrm{I}$, the identity mapping, then we have the result.
Theorem 3.7. From Theorem 3.1, if $g x_{0}$ and $g y_{0}$ are comparable then F and g have a coupled coincidence point (x, y) such that $g x=F(x, y)=F(y, x)=g y$.
Proof. By Theorem 3.1 we construct two sequences x_{n} and y_{n} in X such that $g x_{n} \rightarrow g x$ and $g y_{n} \rightarrow g y$, where (x, y) is a coincidence point of F and g . Suppose $g x_{0} \preceq g y_{0}$, then it is an easy matter to show that $g x_{n} \preceq g y_{n}$ and for all $n \in N \cup 0$. Thus, by (3) we have

$$
\begin{aligned}
d^{2}\left(g x_{n}, g y_{n}\right)= & d^{2}\left(F\left(x_{n-1}, y_{n-1}\right), F\left(y_{n-1}, x_{n-1}\right)\right) \\
\leq & \alpha \min \left\{d\left(F\left(x_{n-1}, y_{n-1}\right), g x_{n-1}\right) d\left(F\left(y_{n-1}, x_{n-1}\right), g x_{n-1}\right),\right. \\
& \left.d\left(F\left(y_{n-1}, x_{n-1}\right), g x_{n-1}\right) d\left(F\left(x_{n-1}, y_{n-1}\right), g y_{n-1}\right)\right\} \\
& +\beta \min \left\{d\left(F\left(x_{n-1}, y_{n-1}\right), g_{y_{n-1}}\right) d\left(F\left(y_{n-1}, x_{n-1}\right), g y_{n-1}\right),\right. \\
& \left.d\left(F\left(x_{n-1}, y_{n-1}\right), g_{y_{n-1}}\right) d\left(F\left(y_{n-1}, x y_{n-1}\right), g x_{n-1}\right)\right\} \\
= & \alpha \min \left\{d\left(g x_{n}, g x_{n-1}\right) d\left(g y_{n}, g x_{n-1}\right), d\left(g y_{n}, g x_{n-1}\right) d\left(g x_{n}, g y_{n-1}\right)\right\} \\
& +\beta \min \left\{d\left(g x_{n}, g y_{n-1}\right) d\left(g y_{n}, g y_{n-1}\right), d\left(g x_{n}, g y_{n-1}\right) d\left(g y_{n}, g x_{n-1}\right)\right\} .
\end{aligned}
$$

Letting the limit as $n \rightarrow \infty$, we get $d(g x, g y)=0$. Hence $F(x, y)=g x=g y=F(y, x)$. A similar argument can be used if $g y_{0} \preceq g x_{0}$.

Corollary 3.4. In addition to hypotheses of Theorem 3.1, if x_{0} and y_{0} are comparable then F has a coupled fixed point of the form (x, x).

Proof. From Theorem 3.7, if $\mathrm{g}=\mathrm{I}$, the identity mapping, then we have the result. We proof the Theorem 3.1 with the help of the following example.

Example 3.1. Suppose $X=[0,1]$. Then (X, \leq) is a partially ordered set with the natural ordering of real numbers. Suppose $d(x, y)=|x-y|$ for $x, y \in X$. Define $g: X \rightarrow X$ by $g(x)=x^{2}$ and $F: X \times X \rightarrow X$ by
$F(x, y)=\left\{\begin{array}{lll}\frac{x^{2}-y^{2}}{10}, & \text { if } \quad x \geq y ; \\ 0, & \text { if } \quad x<y ;\end{array}\right.$
Then
(1) (X, d) is a complete metric space.
(2) $g(X)$ is complete.
(3) $F(X \times X) \subseteq g(X)=X$.
(4) X satisfies (i) and (ii) of Theorem 3.1.
(5) F has the mixed g-monotone property.
(6) F and g satisfy

$$
\begin{aligned}
d^{2}(F(x, y), F(u, v)) \leq & \frac{1}{5} \min \{d(F(x, y), g(x)) d(F(u, v), g(x)), d(F(u, v), g(x)) d(F(x, y), g(u))\} \\
& +\frac{1}{5} \min \{d(F(x, y), g(u)) d(F(u, v), g(u)), d(F(x, y), g(u)) d(F(u, v), g(x))\}
\end{aligned}
$$

for all $g x \preceq g u$ and $g y \succeq g v$. Thus by Theorem 3.1, F and g have a coupled coincidence point. Moreover $(0,0)$ is a coupled fixed point of F .

Proof. The proofs of (1)-(5) are clear. The proof of (6) is divided into the following cases: Case 1. If $x \geq y$ and $u<v$, then we have

$$
\begin{aligned}
d^{2}(F(x, y), F(u, v))= & d^{2}\left(\frac{x^{2}-y^{2}}{10}, 0\right)=\left(\frac{x^{2}-y^{2}}{10}\right)^{2} \leq \frac{x^{4}}{100} \leq \frac{9 x^{4}}{50} \\
\leq & \frac{1}{5}\left(\frac{9 x^{2}}{10}+\frac{y^{2}}{10}\right)^{2}=\frac{1}{5} d^{2}\left(\frac{x^{2}-y^{2}}{10}, x^{2}\right) \\
\leq & \frac{1}{5}\left\{d^{2}\left(\frac{x^{2}-y^{2}}{10}, x^{2}\right), d^{2}\left(0, x^{2}\right)\right\} \\
\leq & \frac{1}{5} \min \left\{d\left(\frac{x^{2}-y^{2}}{10}, x^{2}\right) d\left(0, x^{2}\right), d\left(0, x^{2}\right)\left(\frac{x^{2}-y^{2}}{10}, u^{2}\right)\right\} \\
& +\frac{1}{5} \min \left\{d^{2}\left(\frac{x^{2}-y^{2}}{10}, u^{2}\right) d\left(0, u^{2}\right), d\left(0, x^{2}\right)\left(\frac{x^{2}-y^{2}}{10}, u^{2}\right)\right\} .
\end{aligned}
$$

Case 2. If $x<y$ and $u \geq v$, then

$$
\begin{aligned}
d^{2}(F(x, y), F(u, v))= & d^{2}\left(\frac{u^{2}-v^{2}}{10}, 0\right)=\left(\frac{u^{2}-v^{2}}{10}\right)^{2} \leq \frac{u^{4}}{100} \leq \frac{9 u^{4}}{50} \\
\leq & \frac{1}{5}\left(\frac{9 u^{2}}{10}+\frac{v^{2}}{10}\right)^{2}=\frac{1}{5} d^{2}\left(\frac{u^{2}-v^{2}}{10}, u^{2}\right) \\
\leq & \frac{1}{5}\left\{d^{2}\left(\frac{u^{2}-v^{2}}{10}, u^{2}\right), d^{2}\left(0, u^{2}\right)\right\} \\
\leq & \frac{1}{5} \min \left\{d\left(\frac{u^{2}-v^{2}}{10}, x^{2}\right) d\left(0, x^{2}\right), d\left(0, u^{2}\right)\left(\frac{u^{2}-v^{2}}{10}, x^{2}\right)\right\} \\
& +\frac{1}{5} \min \left\{d^{2}\left(\frac{u^{2}-y^{2}}{10}, u^{2}\right) d\left(0, u^{2}\right), d\left(0, u^{2}\right)\left(\frac{u^{2}-v^{2}}{10}, x^{2}\right)\right\} .
\end{aligned}
$$

Case 3. If $x \leq y$ and $u \geq v$, then

$$
\begin{aligned}
d^{2}(F(x, y), F(u, v))=d^{2}(0,0)=0 \leq & \frac{1}{5} \min \left\{d\left(0, x^{2}\right) d\left(0, x^{2}\right), d\left(0, x^{2}\right) d\left(0, u^{2}\right)\right\} \\
& +\frac{1}{5} \min \left\{d\left(0, u^{2}\right) d\left(0, u^{2}\right), d\left(0, u^{2}\right) d\left(0, x^{2}\right)\right\} \\
\leq & \frac{1}{5} d\left(0, x^{2}\right) d\left(0, x^{2}\right)+\frac{1}{5} d\left(0, u^{2}\right) d\left(0, u^{2}\right) .
\end{aligned}
$$

Case 4. If $x \geq y$ and $u \geq v$, then $v \leq y \leq x \leq u$. Hence

$$
\begin{aligned}
d^{2}(F(x, y), F(u, v))= & d^{2}\left(\frac{x^{2}-y^{2}}{10}, \frac{u^{2}-v^{2}}{10}\right) \\
= & \frac{1}{100}\left|u^{2}-v^{2}-x^{2}+y^{2}\right|^{2} \\
= & \frac{1}{100}\left|u^{2}-x^{2}+y^{2}-v^{2}\right|^{2} \\
= & \frac{1}{100} u^{4} \\
\leq & \frac{1}{5} \min \left\{d^{2}\left(\frac{x^{2}-y^{2}}{10}, u^{2}\right), d^{2}\left(\frac{u^{2}-v^{2}}{10}, u^{2}\right)\right\} \\
\leq & \frac{1}{5} \min \left\{d\left(\frac{x^{2}-y^{2}}{10}, x^{2}\right) d\left(\frac{u^{2}-v^{2}}{10}, x^{2}\right), d\left(\frac{u^{2}-v^{2}}{10}, x^{2}\right) d\left(\frac{x^{2}-y^{2}}{10}, u^{2}\right)\right\} \\
& +\frac{1}{5} \min \left\{d\left(\frac{x^{2}-y^{2}}{10}, u^{2}\right) d\left(\frac{u^{2}-v^{2}}{10}, u^{2}\right), d\left(\frac{x^{2}-y^{2}}{10}, u^{2}\right) d\left(\frac{u^{2}-v^{2}}{10}, x^{2}\right)\right\} .
\end{aligned}
$$

In all the above cases, inequality (3) of Theorem 3.1 is satisfied for $\alpha=\beta=\frac{1}{5}$. Hence by Theorem 3.1, $(0,0)$ is a unique coupled coincidence point. Indeed for $x>y$ we have $F(y, x)=0$ and since $F(y, x)=g(y)$ we have $y=0$. Then $F(x, 0)=g(x)$ implies $x=0$. The cases $x=y$ or $x<y$ are similar.

References

[1] I. Altun, H. Simsek, Some fixed point theorems on ordered metric spaces and application, Fixed Point Theory Appl. 2010 (2010) Article ID 621492.
[2] A. Amini-Harandi, H. Emami, A fixed point theorem for contraction type maps in partially ordered metric spaces and application to ordinary differential equations, Nonlinear Anal. 72 (5) (2010) 2238.2242.
[3] R. P. Agarwal, M. A. El-Gebeily and D. O'Regan, Generalized contractions in partially ordered metric spaces, Appl. Anal. 87 (2008) 1-8.
[4] R. P. Agarwal, M. Meehan and D. O'Regan, Fixed Point Theory and Applications, Cambridge University Press, 2001.
[5] S. Banach, Sur les operations dans les ensembles absraites et leurs applications, Fund. Math. 3 (1922) 133.181.
[6] T. G. Bhaskar and V. Lakshmikantham, Fixed point theorems in partially ordered metric spaces and applications, Nonlinear Anal. 65 (2006) 1379-1393.
[7] L. Ciric, N. Caki., M. Rajovi., J.S. Ume, Monotone generalized nonlinear contractions in partially ordered metric spaces, Fixed Point Theory Appl. 2008 (2008) Article ID 131294, 11 pages.
[8] K.C.Deshmukh, Rakesh Tiwari and Savita Gupta, Generalization of a fixed point theorem of Suzuki type in complete metric space,Journal of Progressive Research in Mathematics(JPRM), Volume 5, (1)(2015),482-486.
[9] Z. Drici, F.A. Mcrae, J. Vasundhara Devi, Fixed point theorems in partially ordered metric spaces for operators with PPF dependence, Nonlinear Anal. 67 (2) (2007) 641.647.
[10] V. Lakshmikantham and L. Ciric, Coupled fixed point theorems for nonlinear contractions in partially ordered metric spaces, Nonlinear Analysis. 70 (2009) 4341-4349. Y.
[11] Wu, Z. Liang, Existence and uniqueness of fixed points for mixed monotone operators with applications, Nonlinear Anal. 65 (10) (2006) 19131924.
[12] H.K. Nashine, I. Altun, Fixed point theorems for generalized weakly contractive condition in ordered metric spaces, Fixed point Theory Appl. 2011 (2011) Article ID 132367, 20 pages.
[13] J.J. Nieto, R.R. Lopez, Contractive mapping theorems in partially ordered sets and applications to ordinary differential equations, Order 22 (2005) 223.239.
[14] J.J. Nieto, R.R. Lopez, Existence and uniqueness of fixed point in partially ordered sets and applications to ordinary differential equations, Acta Math. Sinica, Engl. Ser. 23 (12) (2007) 2205.2212.
[15] D. O 'fregan, A. Petrutel, Fixed point theorems for generalized contractions in ordered metric spaces, J. Math. Anal. Appl. 341 (2) (2008) 1241.1252.
[16] A.C.M. Ran, M.C.B. Reurings, A fixed point theorem in partially ordered sets and some applications to matrix equations, Proc. Amer. Math. Soc. 132 (5) (2004) 1435.1443.
[17] B. Samet, Coupled fixed point theorems for a generalized Meir-Keeler contraction in partially ordered metric spaces, Nonlinear Anal. 72 (2010) 4508.4517.

Rakesh Tiwari
Department of Mathematics
Govt.V.Y.T.PG.Autonomous College
Durg (C.G.)491001
India.
e-mail: rakeshtiwari66@gmail.com
${ }^{1}$ Savita Gupta
Department of Mathematics
Shri Shankaracharya Institute of Technology and Management
Bhilai(C.G.)492001
India.
e-mail: savita.gupta17@gmail.com

[^0]: ${ }^{1}$ Corresponding author
 2000 Mathematics Subject Classification : Primary : 47H10, 54H25

